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Abstract 

 

Predicting the operational lifespan of industrial components remains a critical challenge in manufacturing, where early 

failure leads to costly downtime and waste. This study addresses that problem by applying machine learning to 

estimate the lifespan of materials based on manufacturing process parameters and alloy composition. The dataset 

comprises 1,000 samples containing attributes such as component type, microstructure, cooling and heat-treatment 

parameters, alloy percentages, and defect counts. Seven regression models were developed and compared—Linear 

Regression, Polynomial Regression, Random Forest, XGBoost, Support Vector Regression, CatBoost, and 

LightGBM—using standardized numeric features and one-hot encoded categorical variables. Model performance was 

evaluated through mean squared error (MSE), mean absolute percentage error (MAPE), and the coefficient of 

determination (R²). Tree-based ensemble methods achieved superior results, with LightGBM delivering the best 

performance (MSE = 3757.36, MAPE = 4.13%, R² = 0.964). SHAP explainability analysis revealed that cooling rate, 

alloy composition, and defect counts were the most influential features. These findings demonstrate that gradient 

boosting ensembles, combined with explainability techniques, can provide accurate and interpretable predictions for 

material lifespan optimization in manufacturing environments.  
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I. Introduction  

Accurate prediction of component lifespan is essential for manufacturing reliability, maintenance scheduling, and cost 

optimization. Traditional lifecycle estimates are often conservative and based on limited empirical rules. Machine 

learning provides a data driven approach to estimate lifespan from many interacting process variables. This study 

aims to predict component lifespan in hours using manufacturing parameters and alloy composition. The work trains 

multiple regression models and applies explainability analysis to identify which process and material features most 

strongly influence predicted life. The goal is both accurate prediction and interpretable insight to guide manufacturing 

improvements.  

II. Related Work  

Several studies have applied machine learning to predict material properties and performance under various 

manufacturing conditions. Prior research has focused on corrosion prediction, fatigue life estimation, and process 

optimization using both statistical and modern machine learning approaches.  

A. Predicting Material Fatigue and Degradation The authors in applied machine learning methods to estimate fatigue 

life in metals based on microstructural and environmental variables. Their study employed linear  regression and 

support vector regression to model stress– strain relationships and demonstrated that nonlinear methods can 
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significantly outperform traditional empirical equations. However, this work was limited to a single model type and 

did not include explainability analysis.  

  

Additionally, a comparative study on multi-region real estate price prediction [1] demonstrated how combining 

regression and ensemble learning methods with SHAP explainability can uncover the most important predictive 

features across datasets. Drawing methodological inspiration from that approach, the present work extends similar 

modelling and interpretability techniques to a new domain, predicting material lifespan from process and alloy 

data in manufacturing.  

  

B. Using Ensemble Learning in Manufacturing Prediction  

A separate study introduced the use of Random Forest and Gradient Boosting algorithms to predict material 

strength and hardness based on thermal and mechanical parameters. These ensemble models achieved high 

predictive accuracy but lacked transparency regarding feature contributions. Inspired by this, our work 

incorporates multiple ensemble models, including XGBoost [2], CatBoost [3], and LightGBM [4], and 

complements them with SHAP explainability [5] to interpret feature influence.  

  

C. Integrating Explainable AI in Material Science The work of explored explainable artificial intelligence for 

process optimization in manufacturing, employing SHAP and LIME to identify the most critical process variables. 

Although their focus was processing control rather than lifespan prediction, their methodology validated the 

importance of interpretability in industrial applications.  

  

Building on these studies, our research contributes a comparative evaluation of seven regression algorithms trained 

on a unified dataset describing component manufacturing and metallurgical parameters. Unlike previous works, 

we focus on both prediction accuracy and model interpretability, using SHAP to identify how variables such as 

cooling rate, alloy composition, and defect counts affect predicted lifespan.  

III. Implementation  

A. The Dataset  

Material Lifespan Prediction Dataset [6] Attributes: 

 

Feature  Description  

PredictedHours  Target variable, 

lifespan in hours  

ComponentType  Type of component  

StructureType  Microstructural grain 

configuration  

CoolRate  Cooling rate during 

manufacture  

QuenchDuration  Quenching duration in 

seconds  

ForgeDuration  Forging duration in 

seconds  

HeatProcessTime  Heat treatment time in 

minutes  

NickelComposition  Nickel percentage  

IronComposition  Iron percentage  

CobaltComposition  Cobalt percentage  

ChromiumComposition  Chromium percentage  

MinorDefects  Count of minor 

defects  

MajorDefects  Count of major 

defects  
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EdgeDefects  Count of edge defects  

InitialPosition  Initial component 

position   

FormationMethod  Casting/formation 

method  

Table 1 

 

Correlation matrix: A correlation matrix is a table displaying the correlation coefficients for every pair of variables in 

a dataset. These coefficients always fall within the range of -1 and 1. A strong correlation exists when the coefficient 

is close to either positive one, indicating a positive relationship where variables move in the same direction, or negative 

one, indicating a negative relationship where variables move in opposite directions. a coefficient approaching zero 

indicates a weak correlation.  

  

 
Figure 1 

  

The correlation matrix in Figure 1 illustrates the relationships between numerical features in the dataset.  

Nickel Composition showed a moderate positive correlation (0.31) with PredictedHours, indicating that higher nickel 

content generally leads to longer material lifespan. Conversely, IronComposition displayed a weak negative correlation 

(–0.25), suggesting that excessive iron content may slightly reduce durability.  

  

Distribution of numerical features:  

Figure 13 shows the distributions of the numerical input features used to predict component lifespan. These histograms 

summarize the range, central tendency, and skewness for each continuous predictor and highlight count distributions 

for the defect features.  
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Figure 2 

 

The distributions reveal several important characteristics of the data that guided our preprocessing and modeling 

choices. First, many continuous process variables such as CoolRate, QuenchDuration, ForgeDuration and 

HeatProcessTime span distinct ranges and do not all follow the same distributional form; some appear fairly uniform 

while others show mild skew. Composition features such as Nickel Composition and ChromiumComposition 

concentrate within a limited band, indicating most samples share similar alloy ratios. Notably, the defect variables are 

highly zero-inflated: MinorDefects has a long right tail with many small counts, whereas MajorDefects and 

EdgeDefects are dominated by zeros. This zero-inflation indicates that defect counts are sparse events and may require 

special handling.  

  

B. Data Refining and Standardising The dataset was first inspected for completeness and basic consistency. No 

missing values were detected across the 1,000 samples, and duplicate rows were absent. Numeric features were 

standardized to zero mean and unit variance using StandardScaler to ensure comparability across measurements. 

Categorical features were encoded with one-hot encoding using handle_unknown='ignore' so the preprocessing 

remains robust to unseen categories in the test set. A random 80/20 train/test split with a fixed seed was used to 

ensure reproducible evaluation. Additionally, we inspected the target distribution and considered logtransforming 

highly skewed targets where appropriate to stabilise variance; MAPE was computed only when actual values were 

non-zero to avoid division by zero issues.  

  

C. Model Training  

Seven regression models were trained using identical preprocessing pipelines to ensure fair comparison. Models 

used in this study were:  
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‐  Linear Regression  

‐  Polynomial Regression (degree 

2)  

‐  Random Forest Regressor  

‐  XGBoost Regressor  

‐  Support Vector Regression  

‐  CatBoost Regressor  

  LightGBM Regressor  

  

No hyperparameters were tuned for this study. Models were trained using default (library) settings unless 

otherwise noted. For reproducibility, the preprocessing and model pipelines were encapsulated using scikit-learn 

Pipelines [6].  

IV. Experiments and Results  

A. Evaluation metrics and methodology  

Models were evaluated on this test using:  

‐ Mean Squared Error (MSE) [8]  

‐ Mean Absolute Percentage Error (MAPE)  

‐ R squared (R²)  

Each model was trained on the training set and scored on the hold-out test set. The final numeric results are 

summarized in Table 2  

 

 

Model  MSE  MAPE  

(%)  

R²  

Linear  

Regression  

91234.997  21.697  0.119  

SVR  36668.623  12.424  0.646  

Polynomial  

Regression   

30087.187  11.867  0.709  

Random 

Forest  

7647.216  6.163618  0.926  

XGBoost  5754.633  5.155  0.944  

LightGBM  3757.36  4.13  0.964  

Catboost  2729.909  3.338  0.973  

Table 2 

Notes: SVR underperformed relative to tree based ensembles on this data  

 

 

 

 

 

 

 

 

 

  

http://www.ijrst.com/


International Journal of Research in Science and Technology                                              http://www.ijrst.com 

 

(IJRST) 2025, Vol. No. 15, Issue No. 4, Oct-Dec                                       e-ISSN: 2249-0604, p-ISSN: 2454-180X 

 

36 

 

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY 

 

B. Visualisation & Eplainability  

Figure 2. Linear Regression Model 

 

 

 

Figure 3. Support Vector Regression Model 

 

 

 

Figure 4. Polynomial Regression Model 
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Figure 5. Random Forest Model 

 

Figure 6. XGBoost Model 

 

Figure 7: LightGBM Model 
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Figure 8. CatBoost Model 

 
 

These results clearly demonstrated the superiority of tree-based ensemble methods (Figure 5,6,7 & 8) for this task 

compared to non tree based ensemble methods (Figure 2,3 & 4)  

The CatBoost Regressor (Figure 8) emerged as the topperforming model, achieving the lowest Mean Squared 

Error (MSE) and the highest coefficient of determination (R² ) at 0.974. It also recorded the lowest mean 

percentage prediction error (MAPE).  

SHAP Analysis:  

For interpretability, SHAP summary plots were generated for the leading tree-based models.  

SHAP Analysis:  

Random forest:  

Figure 9: Random Forest SHAP Summary Plot 
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XGBoost:  

Figure 10: XGBoost SHAP Summary Plot 

 

  

LightGBM:  

Figure 11: LightGBM SHAP Summary Plot 
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CatBoost:  

Figure 12: CatBoost SHAP Summary Plot 

 

Key finding:  

The SHAP explainers consistently ranked cooling related features, nickel and chromium composition, and defect 

counts among the top contributors to predicted lifespan. Place the SHAP figure and then a brief paragraph 

interpreting the plot, e.g., high cooling rates decrease predicted life, or increased major defects reduce predicted 

life, etc., based on the observed SHAP sign and magnitude.  

 

V. Conclusion  

This study demonstrates that machine learning models can accurately estimate component lifespan using 

manufacturing process variables and alloy composition. Gradient boosting ensembles, specifically LightGBM and 

CatBoost, delivered the most accurate predictions in this analysis. LightGBM produced the strongest numeric 

performance and, together with SHAP explainability, identified cooling rate, alloy composition, and defect counts as 

the principal drivers of predicted lifespan. Linear and polynomial regression provided baseline performance and 

interpretability, while SVR did not generalize well on this dataset under default settings. The combination of high 

predictive accuracy and explainability makes these models valuable for data driven process improvement and 

maintenance planning.   

These models are not just predictive engines but are foundational for data-driven process improvement, enabling 

manufacturers to optimize specific production parameters (like cooling rate) to maximize longevity and integrate 

predictive lifespan estimates directly into maintenance and reliability planning.  
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VI. Future Work  

In this research we trained several baseline and ensemble models without performing extensive hyperparameter 

optimization, so there is clear scope for further tuning using grid search, randomized search, or Bayesian optimization 

to potentially improve predictive accuracy. Additional machine learning approaches, including neural networks, zero-

inflated or two-stage models for sparse defect counts, and time-aware models if longitudinal data become available, 

could also be explored to broaden the analysis. While we used SHAP to evaluate feature contributions, the work could 

be extended to include alternative interpretability methods and model-specific importance plots to corroborate the 

explanations. Finally, collecting more data across different component types and manufacturing conditions would 

strengthen generalizability and allow comparative studies that identify whether the same process and composition 

drivers hold across parts and plants, enabling more robust, actionable recommendations for production engineers.  
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