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Abstract

Predicting the operational lifespan of industrial components remains a critical challenge in manufacturing, where early
failure leads to costly downtime and waste. This study addresses that problem by applying machine learning to
estimate the lifespan of materials based on manufacturing process parameters and alloy composition. The dataset
comprises 1,000 samples containing attributes such as component type, microstructure, cooling and heat-treatment
parameters, alloy percentages, and defect counts. Seven regression models were developed and compared—Linear
Regression, Polynomial Regression, Random Forest, XGBoost, Support Vector Regression, CatBoost, and
LightGBM—using standardized numeric features and one-hot encoded categorical variables. Model performance was
evaluated through mean squared error (MSE), mean absolute percentage error (MAPE), and the coefficient of
determination (R?). Tree-based ensemble methods achieved superior results, with LightGBM delivering the best
performance (MSE = 3757.36, MAPE = 4.13%, R2=0.964). SHAP explainability analysis revealed that cooling rate,
alloy composition, and defect counts were the most influential features. These findings demonstrate that gradient
boosting ensembles, combined with explainability techniques, can provide accurate and interpretable predictions for
material lifespan optimization in manufacturing environments.
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1. Introduction

Accurate prediction of component lifespan is essential for manufacturing reliability, maintenance scheduling, and cost
optimization. Traditional lifecycle estimates are often conservative and based on limited empirical rules. Machine
learning provides a data driven approach to estimate lifespan from many interacting process variables. This study
aims to predict component lifespan in hours using manufacturing parameters and alloy composition. The work trains
multiple regression models and applies explainability analysis to identify which process and material features most
strongly influence predicted life. The goal is both accurate prediction and interpretable insight to guide manufacturing
improvements.

II. Related Work

Several studies have applied machine learning to predict material properties and performance under various
manufacturing conditions. Prior research has focused on corrosion prediction, fatigue life estimation, and process
optimization using both statistical and modern machine learning approaches.

A. Predicting Material Fatigue and Degradation The authors in applied machine learning methods to estimate fatigue
life in metals based on microstructural and environmental variables. Their study employed linear regression and
support vector regression to model stress— strain relationships and demonstrated that nonlinear methods can
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significantly outperform traditional empirical equations. However, this work was limited to a single model type and

did not include explainability analysis.

Additionally, a comparative study on multi-region real estate price prediction [1] demonstrated how combining
regression and ensemble learning methods with SHAP explainability can uncover the most important predictive
features across datasets. Drawing methodological inspiration from that approach, the present work extends similar
modelling and interpretability techniques to a new domain, predicting material lifespan from process and alloy
data in manufacturing.

B. Using Ensemble Learning in Manufacturing Prediction

A separate study introduced the use of Random Forest and Gradient Boosting algorithms to predict material
strength and hardness based on thermal and mechanical parameters. These ensemble models achieved high
predictive accuracy but lacked transparency regarding feature contributions. Inspired by this, our work
incorporates multiple ensemble models, including XGBoost [2], CatBoost [3], and LightGBM [4], and
complements them with SHAP explainability [5] to interpret feature influence.

C. Integrating Explainable Al in Material Science The work of explored explainable artificial intelligence for
process optimization in manufacturing, employing SHAP and LIME to identify the most critical process variables.
Although their focus was processing control rather than lifespan prediction, their methodology validated the
importance of interpretability in industrial applications.

Building on these studies, our research contributes a comparative evaluation of seven regression algorithms trained
on a unified dataset describing component manufacturing and metallurgical parameters. Unlike previous works,
we focus on both prediction accuracy and model interpretability, using SHAP to identify how variables such as
cooling rate, alloy composition, and defect counts affect predicted lifespan.

I11. Implementation

A. The Dataset
Material Lifespan Prediction Dataset [6] Attributes:

Feature Description
PredictedHours Target variable,
lifespan in hours
ComponentType Type of component
StructureType Microstructural grain
configuration
CoolRate Cooling rate during
manufacture
QuenchDuration Quenching duration in
seconds
ForgeDuration Forging duration in
seconds
HeatProcessTime Heat treatment time in
minutes
NickelComposition Nickel percentage
IronComposition Iron percentage
CobaltComposition Cobalt percentage
ChromiumComposition | Chromium percentage
MinorDefects Count of  minor
defects
MajorDefects Count of  major
defects
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EdgeDefects Count of edge defects
InitialPosition Initial component
position
FormationMethod Casting/formation
method
Table 1

Correlation matrix: A correlation matrix is a table displaying the correlation coefficients for every pair of variables in
a dataset. These coefficients always fall within the range of -1 and 1. A strong correlation exists when the coefficient
is close to either positive one, indicating a positive relationship where variables move in the same direction, or negative
one, indicating a negative relationship where variables move in opposite directions. a coefficient approaching zero
indicates a weak correlation.

Correlation Matrix of Numerical Features
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Figure 1

The correlation matrix in Figure I illustrates the relationships between numerical features in the dataset.

Nickel Composition showed a moderate positive correlation (0.31) with PredictedHours, indicating that higher nickel
content generally leads to longer material lifespan. Conversely, IronComposition displayed a weak negative correlation
(-0.25), suggesting that excessive iron content may slightly reduce durability.

Distribution of numerical features:

Figure 13 shows the distributions of the numerical input features used to predict component lifespan. These histograms
summarize the range, central tendency, and skewness for each continuous predictor and highlight count distributions
for the defect features.
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Figure 2
Distribution of Numerical Features
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The distributions reveal several important characteristics of the data that guided our preprocessing and modeling
choices. First, many continuous process variables such as CoolRate, QuenchDuration, ForgeDuration and
HeatProcessTime span distinct ranges and do not all follow the same distributional form; some appear fairly uniform
while others show mild skew. Composition features such as Nickel Composition and ChromiumComposition
concentrate within a limited band, indicating most samples share similar alloy ratios. Notably, the defect variables are
highly zero-inflated: MinorDefects has a long right tail with many small counts, whereas MajorDefects and
EdgeDefects are dominated by zeros. This zero-inflation indicates that defect counts are sparse events and may require
special handling.

B. Data Refining and Standardising The dataset was first inspected for completeness and basic consistency. No
missing values were detected across the 1,000 samples, and duplicate rows were absent. Numeric features were
standardized to zero mean and unit variance using StandardScaler to ensure comparability across measurements.
Categorical features were encoded with one-hot encoding using handle_unknown='ignore' so the preprocessing
remains robust to unseen categories in the test set. A random 80/20 train/test split with a fixed seed was used to
ensure reproducible evaluation. Additionally, we inspected the target distribution and considered logtransforming
highly skewed targets where appropriate to stabilise variance; MAPE was computed only when actual values were
non-zero to avoid division by zero issues.

C. Model Training
Seven regression models were trained using identical preprocessing pipelines to ensure fair comparison. Models
used in this study were:
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- Linear Regression

- Polynomial Regression (degree
2)

- Random Forest Regressor

- XGBoost Regressor

- Support Vector Regression

- CatBoost Regressor

[1  LightGBM Regressor

No hyperparameters were tuned for this study. Models were trained using default (library) settings unless
otherwise noted. For reproducibility, the preprocessing and model pipelines were encapsulated using scikit-learn
Pipelines [6].

IV. Experiments and Results

A. Evaluation metrics and methodology

Models were evaluated on this test using:

- Mean Squared Error (MSE) [8]
- Mean Absolute Percentage Error (MAPE)
- R squared (R?)

Each model was trained on the training set and scored on the hold-out test set. The final numeric results are
summarized in 7able 2

Model MSE MAPE R?
(%)

Linear 91234.997 | 21.697 0.119

Regression

SVR 36668.623 | 12.424 0.646

Polynomial 30087.187 | 11.867 0.709

Regression

Random 7647.216 | 6.163618 | 0.926

Forest

XGBoost 5754.633 | 5.155 0.944

LightGBM 3757.36 4.13 0.964

Catboost 2729.909 | 3.338 0.973
Table 2

Notes: SVR underperformed relative to tree based ensembles on this data
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B. Visualisation & Eplainability

Figure 2. Linear Regression Model
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Figure 3. Support Vector Regression Model
SVR: Actual vs Predicted
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Figure 4. Polynomial Regression Model
Polynomial Regression: Actual vs Predicted
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Figure 5. Random Forest Model
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Figure 6. XGBoost Model
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Figure 7: LightGBM Model
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Figure 8. CatBoost Model

CatBoost: Actual vs Predicted

2000

1800

1600

1400

1200

Predicted PredictedHours

1000

800

600

600 800 1000 1200 1400 1600 1800 2000
Actual PredictedHours

These results clearly demonstrated the superiority of tree-based ensemble methods (Figure 5,6,7 & 8) for this task
compared to non tree based ensemble methods (Figure 2,3 & 4)

The CatBoost Regressor (Figure 8) emerged as the topperforming model, achieving the lowest Mean Squared
Error (MSE) and the highest coefficient of determination (R? ) at 0.974. It also recorded the lowest mean
percentage prediction error (MAPE).

SHAP Analysis:

For interpretability, SHAP summary plots were generated for the leading tree-based models.
SHAP Analysis:
Random forest:

Figure 9: Random Forest SHAP Summary Plot
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XGBoost:
Figure 10: XGBoost SHAP Summary Plot
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LightGBM:
Figure 11: LightGBM SHAP Summary Plot
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CatBoost:
Figure 12: CatBoost SHAP Summary Plot
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Key finding:

The SHAP explainers consistently ranked cooling related features, nickel and chromium composition, and defect
counts among the top contributors to predicted lifespan. Place the SHAP figure and then a brief paragraph
interpreting the plot, e.g., high cooling rates decrease predicted life, or increased major defects reduce predicted
life, etc., based on the observed SHAP sign and magnitude.

V. Conclusion

This study demonstrates that machine learning models can accurately estimate component lifespan using
manufacturing process variables and alloy composition. Gradient boosting ensembles, specifically LightGBM and
CatBoost, delivered the most accurate predictions in this analysis. LightGBM produced the strongest numeric
performance and, together with SHAP explainability, identified cooling rate, alloy composition, and defect counts as
the principal drivers of predicted lifespan. Linear and polynomial regression provided baseline performance and
interpretability, while SVR did not generalize well on this dataset under default settings. The combination of high
predictive accuracy and explainability makes these models valuable for data driven process improvement and
maintenance planning.

These models are not just predictive engines but are foundational for data-driven process improvement, enabling

manufacturers to optimize specific production parameters (like cooling rate) to maximize longevity and integrate
predictive lifespan estimates directly into maintenance and reliability planning.

40

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY


http://www.ijrst.com/

International Journal of Research in Science and Technology http://www.ijrst.com

(IJRST) 2025, Vol. No. 15, Issue No. 4, Oct-Dec e-ISSN: 2249-0604, p-ISSN: 2454-180X
VI. Future Work

In this research we trained several baseline and ensemble models without performing extensive hyperparameter
optimization, so there is clear scope for further tuning using grid search, randomized search, or Bayesian optimization
to potentially improve predictive accuracy. Additional machine learning approaches, including neural networks, zero-
inflated or two-stage models for sparse defect counts, and time-aware models if longitudinal data become available,
could also be explored to broaden the analysis. While we used SHAP to evaluate feature contributions, the work could
be extended to include alternative interpretability methods and model-specific importance plots to corroborate the
explanations. Finally, collecting more data across different component types and manufacturing conditions would
strengthen generalizability and allow comparative studies that identify whether the same process and composition
drivers hold across parts and plants, enabling more robust, actionable recommendations for production engineers.
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